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Abstract

The customer base of a firm is an important and persistent determinant of its performance.
Using rich U.S. data on consumer shopping behavior and good prices, we document that the
customer turnover is sensitive to price variation. Motivated by this finding, we study an econ-
omy where the customer base of a firm is persistent because of search frictions preventing
customers from freely relocating across suppliers of consumption goods, and firms set prices
under customer retention concerns. The key feature of our model is that the elasticity of the
customer base to price - the extensive margin elasticity of demand - depends on the customers’
endogenous opportunity cost of search, and interacts with heterogeneity in firm productivity.
More productive firms enjoy lower customer attrition and elasticity of demand. A higher search
intensity is associated to higher demand elasticity and lower prices. This results into a new
channel affecting the relationship between consumer search and price markups in response to
aggregate shocks. In particular, an increase in the utility of consumption relatively to the cost
of search results in higher demand elasticity and lower prices, amplifying the effects of demand
shocks on output. We highlight that the price response to demand shocks is heterogenous across
firms affecting dispersion in prices and consumption across consumers.
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1 Introduction

The customer base of a firm -the set of customers buying from it at a given point in time- is an

important determinant of firm performance. Its effects are long lasting, as customer-supplier

relationships are subject to a certain degree of stickiness (Hall (2008)). Starting with Phelps

and Winter (1970), a large literature has stressed that the price is an important instrument

to attract and retain customers. Several authors have emphasized that accounting for the

influence of customer markets on firm pricing has relevant implications for the propagation of

aggregate shocks to prices and output. These studies do not typically microfound customer

reallocation across firms (Rotemberg and Woodford (1991)), or rely on consumption habit

formation abstracting from consumer flows (Ravn et al. (2006)).

In this paper we study firm pricing with customer retention concerns in a model with

endogenous customer dynamics and heterogeneous firm productivity. We show that account-

ing for endogenous customer turnover in response to firm pricing delivers two main results.

On the micro side, it can deliver two important features of price and demand dynamics:

the incomplete and heterogeneous price pass-through of cost shocks (Auer and Schoenle

(2016), Garetto (2016)) and the persistence of market share (Foster et al. (2016)). To retain

customers firms have to absorb productivity shocks in their markups, causing incomplete

pass-through. Inertia in the customer base of a firm induces persistence in firm demand that

amplifies the effect of the persistence in firm productivity.

On the macro side, we highlight a novel channel by which aggregate shocks can propagate

to output through their effect on consumer search behavior and firm pricing. Shocks that

incentivize consumers to search motivate firms to lower their prices to retain them. This

mechanism amplifies the effect of demand shocks on prices and output and ties to a recent but

very active area of research that emphasizes the importance of consumer shopping behavior

for macroeconomic dynamics (Bai et al. (2012), Coibion et al. (2015), Kaplan and Menzio

(forthcoming), Nevo and Wong (2015)).

Finally, our study also offers a methodological contribution by building a framework to

study the link between firm pricing and demand which features both customer turnover and

price dispersion of identical products in equilibrium. Hence, our setup lends itself naturally

to quantification of the key margins shaping the benefit and cost of searching by matching

these observable statistics from micro data.

The link between pricing and customer base is the central tenet of our model and of the

literature on customer markets more in general. Yet the existing evidence on this mechanism

consists mostly of anecdotes and surveys (Blinder et al. (1998), and Fabiani et al. (2007)).

Therefore, we begin our analysis by presenting what we believe is the first instance of direct
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evidence linking firm prices with customer base evolution. We exploit scanner data docu-

menting pricing and customer base evolution for a major U.S. retailer. The data contain

information on all the shopping trips each household makes to the chain. This allows us

to infer when customers leave the retailer by looking at prolonged spells without purchases

at the chain. Combining this data with detailed information on the prices posted by the

retailer, we are able to study the relation between a customer’s decision to abandon the

firm and the price of the goods she consumes there. We show that an increase in the price

significantly raises the probability that the customer leaves the firm. This implies that the

customer base is elastic to prices: a 1% change in the price of the goods typically consumed

by the customers would raise the firm yearly customer turnover from 14% to 21%.

Next, we introduce a microfounded model of firm pricing with customer markets and focus

on the interaction of pricing in response to idiosyncratic productivity with customers’ search

intensity. The distinctive feature of our setting is that we endogenize customer dynamics.

We do so by explicitly modeling the game between a firm and its customers. Customers

start each period in the customer base of the firm from which they bought in the previous

period. Every period, firms draw a new idiosyncratic productivity level, and post a price.

Then, each customer can decide to pay an idiosyncratic search cost1 to observe the state of

another randomly selected firm, compare it to that of her old supplier, and decide where to

buy (extensive margin of demand). After these decisions have been made, each customer

decides her purchased quantity of the good (intensive margin of demand). In this setting,

firms face the common invest\harvest trade-off (Galenianos and Gavazza (2015)): charging

a higher price and extracting more surplus from customers, versus posting a lower price to

extract a lower surplus but from a larger mass of customers.

While being tractable, the model provides a rich laboratory to study how the relationship

between customer and price dynamics is shaped, in equilibrium, by idiosyncratic production

and search costs. Even though the pool of customers matched with each firm is characterized

by the same distribution of search costs, the threshold to search varies across firms. In

particular, since higher productivity is associated to lower prices on average and thus a higher

value of staying in the match, the threshold to search decreases with firm productivity. Thus

more productive firms charge lower prices, are net gainer of customers and grow faster. Less

productive firms are net looser of customers, despite charging lower markups.

The existence of heterogeneity across consumer in the propensity to search and across

firms in their reaction through pricing also influences the propagation of aggregate shocks.

In particular, we study the effect of a demand shock that affects the disutility of searching

1Modeling the market friction as a search cost suits well our application since search costs have been found
to importantly affect price dispersion in clustered retail markets (Sorensen (2000)) similar to those to which
our empirical application refers to.
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of the type emphasized by Bai et al. (2012), or equivalently preference shocks that shift

the utility from consumption. A positive demand shock that raises customers’ willingness

to consume also affects their search intensity since it is now more valuable for them to be

matched with good sellers. This implies that there are more consumers looking to switch,

which forces firms to lower their markup to retain them. The result is that markups drop,

magnifying the effect of the demand shock on output. We document that the response to the

shock is heterogeneous: less productive firms lower their price more. Firms in the bottom

quartile of the productivity distribution account for half of the aggregate price response.

Since low productivity firms charge higher prices to begin with, the aggregate shock reduces

the dispersion in the price paid and in the consumption across consumers. If the planner

cares about dispersion of consumption, this findings carries the important implication that

the covariance between firm productivity and the price elasticity of the customer base to

consumer search intensity is a key dimension to consider to assess the welfare consequences

of a reduction in the cost opportunity of search.

Related Literature. Our paper relates to the seminal work by Phelps and Winter (1970)

who study the pricing problem of a firm facing customer retention concerns. In their paper,

the response of the firm’s customer base to a change in the firm’s price is modeled with an

ad hoc function. We instead endogenize customer dynamics which arise as the outcome of

customers’ optimal search decisions in response to firms’ pricing. Since we model the product

market friction as a search cost, we relate to other studies looking at the firm price-setting

problem in models where search costs prevent customers from freely moving to the lowest

price supplier (Fishman and Rob (2003), Alessandria (2004), and Menzio (2007)). Our model

has the distinctive feature of delivering both price dispersion and customer reallocation in

equilibrium. This is a particularly desirable property as it offers the chance to quantify the

model matching available statistics on price dispersion and customer turnover.

We share with the literature on deep habits (Ravn et al. (2006)) the interest for the impact

of aggregate shocks on markups through their effect on the elasticity of demand. The main

difference is that in deep habits models there is, typically, no extensive margin of demand

as each consumer buys from all firms at any point in time, albeit with different habit and

expenditure, and all the adjustment in demand takes place along the intensive margin. In

our model, instead, the extensive margin plays a key role.

Several studies look at the implications of product market frictions for business cycle fluc-

tuations. Bai et al. (2012) analyze a demand-driven business cycle model where preference

shocks affect consumers’ search incentives and consumption by directly impacting produc-

tion efficiency, so to show up as shocks to the Solow residual. Petrosky-Nadeau and Wasmer
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(2015) and Kaplan and Menzio (forthcoming) study the interaction of labor and product mar-

ket frictions, linking unemployment dynamics to consumer search effort. In these models,

whether consumer search amplifies or dampens the recessionary implications of higher unem-

ployment depends on how consumer search intensity comoves with unemployment. Coibion

et al. (2015) document the relationship between the household expenditure allocation across

retailers and unemployment and find that households pay on average a lower price when

unemployment is higher. While we share with these papers the interest on the transmis-

sion of aggregate shocks to search intensity, we explore an additional channel through which

aggregate shocks affect the opportunity cost of searching.

Another set of related contributions uses customer markets to address questions different

from the ones we study here. Gourio and Rudanko (2014) explore the relationship between

the firm’s effort to capture customers and its performance. Drozd and Nosal (2012) introduce

in a standard international real business cycle model the notion that, when producers want to

increase sales, they must exert effort to find new customers. Kleshchelski and Vincent (2009)

examine the impact of customer markets on the pass-through of idiosyncratic cost shocks to

prices in an economy where firms are identical and there is no price dispersion. Dinlersoz and

Yorukoglu (2012) focus on the importance of customer markets for industry dynamics in a

model where firms use advertising to disseminate information to uninformed customers. Shi

(2011) studies a setting where firms cannot price discriminate across customers and use sales

to attract new customers. Burdett and Coles (1997) study the role of firm size for pricing

when firms use the price to attract new customers. The industrial organization literature

has also studied the implications of customer markets for a variety of subjects. For instance,

Foster et al. (2016) stress their role in affecting firm survival and Einav and Somaini (2013)

and Cabral (2014) focus on their effect on the competitive environment.

The rest of the paper is organized as follows. Section 2 presents the data and descriptive

evidence of the relationship between customer dynamics and prices. In Section 3 we lay out

the model, characterize the equilibrium and discuss its calibration. In Section 4 we present

some quantitative predictions of the model and compare them with empirical evidence from

our data. In Section 5 we introduce an application of the model with the goal of studying the

implications of customer markets for the dynamics of markups and price dispersion. Section 6

concludes.

2 The link between prices and customer dynamics

We use novel micro data to provide direct evidence that firm prices have an effect on the

evolution of their customer base. In particular, we document that changes in the price of the
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basket of goods typically bought by a customer at a large US retailer affect the probability

of that customer abandoning the retailer. This result provides a compelling motivation to

modeling the link between customer dynamics and pricing policy, lending support to the

central tenet of the growing literature on customer markets. Pre-existing evidence of this

relationship is based on survey data where firms report concerns about customer retention as

the main reason for their reluctance to adjust prices (see Blinder et al. (1998), and Fabiani

et al. (2007)). To the best of our knowledge, we are the first to document this fact using

micro data based on actual customers’ decisions.

2.1 Data sources and variable construction

The empirical study of the interaction of consumer shopping behavior and retail prices

presents two challenges. First, we have to define what it means to exit the customer base;

second, we need to identify the price to which customers react. Below we briefly describe our

approach; the details are left to Appendix C.

To identify customer base evolution we rely on a dataset (henceforth, “retailer consumers

panel”) consisting of cashier register records on purchases by a panel of households carrying a

loyalty card of a large U.S. supermarket chain.2 The most important feature of this dataset is

that it allows us to keep track of a set of loyal customers of the chain.3 In fact, for every trip

made at the chain between June 2004 and June 2006 by customers in the sample, we have

information on the date of the trip, store visited, and list of goods purchased (as identified by

their Universal Product Code, UPC), as well as quantity and price paid. We consider every

customer shopping at the retailer in a given week as belonging to the chain’s customer base

in that week and assume that a household has exited the customer base when she has not

shopped at the chain for eight or more consecutive weeks. The decision to exit is imputed to

the last time the customer visited the chain.

The definition of exit takes into account that brief spells without purchases do not nec-

essarily imply that a shopper has left the chain: she may just be consuming her inventory or

being on vacation. However, a regular customer is unlikely to experience a long spell without

shopping for reasons other than having switched to a different chain. In fact, for the average

household in our sample, only four days elapse between consecutive grocery trips and the

2The chain is able to associate the loyalty cards belonging to different members of a same family to a
single household identifying number, which is the unit of observation in our data. Therefore, in the analysis
we use the terms “customer” and “household” interchangeably.

3The chain is able to associate the loyalty cards belonging to different members of a same family to a
single household identifying number, which is the unit of observation in our data. Therefore, in the analysis
we use the terms “customer” and “household” interchangeably. The household identifier also allows us to
track members of a same household when they lose (and replace) their individual loyalty card.
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99th percentile of this statistic is 28 days. This implies that the period of absence we require

before determining that a customer has exited the customer base is probably a conservative

choice. half the length of the absence we require before inferring that a household is buying

its groceries at a competing chain. This suggests that the eight-week window is a conservative

choice.

In Figure 1 we plot the survival function for our sample of customers, that is the probabil-

ity of remaining in the customer base of the firm as a function of the length of the household

spell as a customer. In the plot, we explore the sensitivity of customer base evolution to our

definition of exit by displaying two survival functions. The solid line refers to our baseline

definition; the dashed line represents the survival probability if we extend to three months the

absence spell required to determine that the customer has exited. The first thing to notice

is that, regardless of the definition of exit we adopt, the odds of exiting the customer base

evolve smoothly. The second noteworthy fact emerging from the plot is that the customer

base is quite sticky: the probability of never exiting the customer base in 90 weeks is between

70% and 80%. These values lend support to industry estimates on the customer attrition

rate surveyed in Gourio and Rudanko (2014).

The second object we need to construct is the price which affects each customer’s exit

decision. In our data, huseholds shop at the retailer’s store for a number of different goods,

defined at the barcode (Universal Product Code or UPC) level. We construct a price for

the basket of grocery goods usually purchased by each households. We do so by exploiting

data, previously used and documented by Eichenbaum et al. (2011), on store level weekly4

revenues and quantities for the full set of UPCs purchasable at stores of the chain (henceforth,

“retailer price data”). We recover the weekly price for each UPC by dividing the revenues

by the quantity sold in the week. Then, we construct the price paid by customer i, shopping

at store j in week t for its basket as the average price of the goods included in the basket,

weighted for the share of grocery expenditure of the household they represent. Namely:

pijt =
∑
k∈Ki

ωik pkjt , ωik =

∑
tEikt∑

k∈Ki

∑
tEikt

, (1)

where pkjt is the price of UPC k in week t at the store j where customer i shops, Ki represents

the collection of UPCs beloging to household i ’s basket and Eikt is the expenditure (in dollars)

by customer i in UPC k in week t. The latter two objects are measured using the retailer

consumers panel. It is important to notice that the price of the basket is household specific

because households differ in their choice of grocery products (Ki) and in the weight such

4The retailer changes the price of each good at most once per week, hence the frequency of the retailer
price data captures the entire time variation.
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Figure 1: Survival in the customer base
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Notes: The figure plots the survival function for our sample of households, where failure is defined as exit from the customer
base. We report two survival functions for different criteria to determine whether the customer has exited: two consecutive
months without shopping at the chain (our baseline definition, continuous black line), and three consecutive months without
shopping at the chain (dashed red line). To ensure that all individuals have similar potential length for their spells, we only
consider the first spell as customer for those having multiple ones and we only retain households whose first trip at the chain
occurs within the first 40 weeks in our sample.

goods have in their budget (ωik).

2.2 Evidence on customer base dynamics

We estimate a linear probability model where the dependent variable is an indicator for

whether the customer has left the customer base of the chain in a particular week. Our aim

is to capture the effect of the price posted by the chain for the basket of goods purchased

by the customer on her decision to exit. In Table 1, we report results of regressions of the

following form,

Exitit = b0 + b1 log(pit) + b2 log(p
mkt
it ) + b3tenureit +X ′

ic + εit . (2)

Our main interest is on the coefficient of the retailer price of the basket, b1, which is a
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measure of the elasticity of the exit decision to price.5 The coefficient b1 is then identified by

UPC-chain specific shocks as those triggered, for example, by the expiration of a contract

between the chain and the manufacturer of a UPC. We also observe the price of a same good

moving differently in different stores within the chain, for instance due to variation in the cost

of supplying the store linked to logistics (e.g. fluctuations in the price of gas affect differently

stores at different distance from the warehouse). Since these shocks can hit differently goods

with different intensity in delivery cost (e.g. refrigerated vs. non-refrigerated goods), UPC-

store specific shocks also contribute to our identification. We do not need to assume that

such shocks will make a supermarket uniformly more expensive than the competition. Shocks

that affect the convenience of a chain with respect to a subset of goods suffice to induce the

customers who particularly care about those goods to leave. Kaplan and Menzio (2015) use

a different scanner data to provide ample evidence for this type of variation. They report

that the bulk of price dispersion arises not from the difference between high-price and low-

price stores but from dispersion in the price of a particular good (or product category) even

among stores with similar overall price level. Since the retailer price in equations (2) can be

endogenous if the chain conditions to variables unobserved to the econometrician that also

influence the customer’s decision to leave, we instrument it using information on replacement

cost for each UPC included in the retailer price data.6 We use the UPC level replacement

cost to construct the cost of the customer’s basket with a procedure analogous to the one

we followed to obtain the price of the basket: we calculate it as the weighted average of the

replacement cost of the UPCs included in the basket.

Existing theories on the link between prices and customer dynamics (Phelps and Winter

(1970)) stress that a firm’s ability to retain its customers should be influenced by its idiosyn-

cratic price variations but not from aggregate shocks that move the competitors’ prices as

well. To isolate idiosyncratic price variations, we control for the prices posted by the com-

petitors in the same market of the chain using information from the IRI Marketing data set.7

This data allows us to compute for every customer the average (cross retailers) price of her

basket in the market where she lives (p̄it). To further control for sources of aggregate varia-

tion, we include in the regression year-week fixed effects that account for time-varying drivers

of the decision of exiting the customer base common across households (e.g., disappearances

5To ease notation, we have dropped the j superscript: it is implicit that pit is the price of the basket
purchased by consumer i in week t at the store j where she usually shops.

6This represents the replacement cost for the chain, i.e. the cost for the retailer of restocking the product.
It includes the wholesale price but also other costs associated with logistics (delivery to the store, etc.).
Eichenbaum et al. (2011) treat this measure as a good approximation of the retailer’s marginal cost.

7A detailed description of the data can be found in Bronnenberg et al. (2008). All estimates and analyses
in this paper based on Information Resources Inc. data are by the authors and not by Information Resources
Inc. We provide additional details on the IRI data and on the construction of the price index for the
competitors of the chain in Appendix C.
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due to travel during holiday season).

The additional controls in our specification account for sources of customer heterogeneity

that could influence their exit decision. The limited number of exits occurring in our sample

implies that the within unit variation in the dependent variable is low. Therefore, we cannot

control nonparametrically for cross-household heterogeneity using household or store fixed

effects. Instead, we include in our specification a rich set of covariates that control for the

main characteristics affecting store choice: demographics, location, market characteristics,

and tenure. The demographic variables (age, income, and education) are matched from

Census 2000. We calculate, using data on grocery shop location by Reference US, both the

distance (in miles) between a household’s residence and the closest store of the chain and

that to the closest supermarket of a competing brand. We account for market structure by

controlling for the total number of supermarket stores in the zip code of residence of the

customer. To pick up the heterogeneity in the type of goods different customers include in

their basket, we control for the price volatility of the customer-specific basket and for its price

in the first week in the sample, as a scaling factor. Finally, we calculate customer tenure,

defined as the number of consecutive weeks the customer has spent in the customer base of

the chain, and include it in the regression to account for the fact that long-term customers

of the chain may be less willing to leave it ceteris paribus.

The main specification in column (1) shows that the basket price posted by the retailer

significantly impacts the probability of leaving. The effect is also quantitatively important.

A weekly price elasticity of the customer base equal to 0.14 implies that if the retailer’s

prices were 1% higher for a full year, the customer base would decrease 7%. The coefficient

on the competitors’ price, which we would expect to enter with a negative sign, is not

significant. This may be due to the fact that the IRI data only allow us to imperfectly

capture competitors’ behavior. In fact, the IRI dataset contains price information only on

a subset of the goods included in a customer’s basket, although it arguably covers all the

major product categories. Furthermore, the IRI data do not contain detailed information

on the location of the outlets. This introduces measurement error in our construction of the

set of stores a customer considers as options for her shopping. The negative coefficient on

tenure confirms the intuition that the longer the relationship between a firm and a customer,

the less likely they are to be interrupted. Among the several individual characteristics we

control for, it is worth mentioning that distance from stores of the chain and distance from

the closest competing store enter with the expected sign. Customers living in proximity of a

store of the chain are less likely to leave it, and those living closer to competitors’ stores are

more inclined to do so.

Additional columns in Table 1 present robustness checks of our main result. In column
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Table 1: Effect of the price of the basket on the probability of exiting the customer base

Exiting: Missing at least 8 consecutive weeks
(1) (2) (3) (4)

log(pit) 0.14** 0.16** 0.15**
(0.066) (0.080) (0.064)

log(pit)*Walmart entry 0.018**
(0.009)

log(p̄it) 0.001 0.001 0.000
(0.001) (0.001) (0.001)

log(p
j(i)
t ) 0.01

(0.001)

Tenure -0.002*** -0.003*** -0.004*** -0.003***
(0.001) (0.000) (0.000) (0.000)

Observations 52,670 66,182 52,101 52,670

Notes: An observation is a household-week pair. The results reported are calculated through two-stage least squares where we

use the logarithm of the cost of the basket (constructed based on the replacement cost provided for each UPC by the retailer)

as instrument for the logarithm of the price of the basket. In column (3), the exit of the customer is assumed to have occurred

in the first week of absence in the eight (or more) weeks spell without purchase at the chain rather than the week of the last

shopping trip before the hiatus. In column (4), the price of the household basket is substituted with a price index for the store

where the customer shops (identical for all the customers shopping at the same store). We trim from the sample households in

the top and bottom 1% in the distribution of the number of trips over the two years. Coefficients on a series of variables are

not reported for brevity: demographic controls matched from Census 2000 (ethnicity, family status, age, income, education,

and time spent commuting) as well as distance from the closest outlet of the supermarket chain and distance from the closest

competing supermarket (provided by the retailer). The logarithm of the price of the household basket in the first week in the

sample and the standard deviation of changes in the log-price of the household basket over the sample period are included as a

controls in all specifications. Week-year fixed effects are also always included. Standard errors are in parenthesis and account

for within-household correlation through a two-steps feasible-GLS estimator. ***: Significant at 1% **: Significant at 5% *:

Significant at 10%.

(2), we experiment with an alternative way to control for the effect of competition: we exploit

episodes of entry by Walmart, a major retailer with which our chain is in direct competition.

We use data from Holmes (2011) to identify the date of entry by a Walmart supercenter, i.e.

a store selling groceries on top of general discount goods, in a zip code where the retailer we

study also operates a supermarket. The resulting event study allows us to measure the effect

of our retailer price on the probability of exit controlling for the most relevant change in the

competitive environment. The coefficient obtained falls in the same ballpark as the estimate

in the main specification, which is reassuring on the effectiveness of the IRI price in measuring

the competitors’ behavior. In column (3), we modify the assumption on the imputation of
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the date of exit. Rather than assuming that the customer left on the occasion of her last

trip to the store, we posit that the exit occurred in the first week of her absence. Even in

this case, the main result is unaffected. In column (4), we replace the price of the individual

basket with a price index for the store where she buys (p
j(i)
t ). The store price is a price index

of a composite bundles of goods for each store so to accommodate the multiproduct nature

of grocery retailing (Smith (2004)) and its construction resembles that of the price index for

the customer individual baskets. It is calculated as the average of the prices of the goods sold

by the store, weighted by the amount of revenue they generate.8 Formally the price index

for store j in week t is:

pjt =
∑
u∈Aj

ωju p
j
ut , ωju =

∑
tR

j
ut∑

u∈Aj

∑
tR

j
ut

, (3)

where pjut is the price of UPC u in week t at store j, Aj is the set of goods in assortment

at store j and Rj
ut are revenues from UPC k to store j in week t. By construction, p

j(i)
t is

identical for all the customers shopping in the same store.

The coefficient on p
j(i)
t is negative and not significant, confirming the importance of being

able to construct individual specific baskets in order to make inference on customers’ behavior.

Finally, we performed a placebo test to investigate whether it is possible to obtain results

with the same level of significance of our main specification out of pure chance. We estimated

our main specification 1,000 times each time with a different dependent variable where exits

from the customer base, while kept constant in number, are randomly assigned to customers.

We find that only in 2.8% of the cases the simulation yields a price coefficient that is positive

and significant at 5%.

3 The model

The economy is populated by a measure one of firms producing a homogeneous good and by

a measure one of customers who consume it. The economy is in steady state and there are

no foreseen aggregate shocks.

8In principle, we would want to include the prices of all the UPCs carried by the store. In practice, this
is not possible because the information on price is missing for some UPCs in certain store-weeks. Therefore,
the price index for the store is computed using a constant set of UPCs for which we have a complete time
series of prices at the store during our sample.
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3.1 The problem of the firm

Firms produce the same homogeneous good. We assume a linear production technology

y = z � where � is the production input, and z is the firm-specific productivity. Idiosyn-

cratic productivity is distributed according to a conditional cumulative distribution function

F (z′|z) with bounded support [z, z̄]. We also assume that F (z′| zh) first order stochastically
dominates F (z′| zl) for any zh > zl to induce persistence in firm productivity. The profit

per customer accrued to the firm is given by π(p, z) ≡ d(p)(p − w/z), where p denotes the

price, the constant w > 0 denotes the marginal cost of the input �, and the function d(·) is a
downward sloping demand function.9 We assume that profits per customer are single-peaked

in p.

Firms differ not only in their idiosyncratic productivity but also in the mass of customers

buying from them. In particular, we denote by m the firm’s customer base which is defined

as the mass of customers who bought from that firm in the previous period, adjusted for

an exogenous attrition rate δ.Starting from a given customer base m, the mass of customers

actually buying from the firm in the current period is determined in equilibrium and we

conjecture, and later verify, that it is given by the function M(m, p, z) depending on the

price and productivity of the firm in the current period, as well as on the customer base.

We assume a constant probability κ of a firm exiting the market. Once a firm exits the

market it loses all customers and its value is zero. An exiting firm is replaced by a new

firm which starts with a customer base m0, and draws a productivity z0 from the invariant

productivity distribution F̄ (z) associated to the conditional distribution F (z′|z).10
We study a stationary Markov Perfect equilibrium where pricing strategies are a func-

tion of the current state. Firms set prices every period without commitment and without

discriminating across customers.11 As there are no aggregate shocks, the aggregate state is

constant and the relevant state for the firm problem in period t is the pair {z,m}. The firm

pricing problem in its recursive form solves

W̃ (z,m) = max
p

M(m, p, z) π(p, z) + β (1− κ)

∫ z̄

z

W̃ (z′, m′) dF (z′| z) (4)

s.t. m′ = (1− δ)M(m, p, z),

where W̃ (z,m) denotes the firm value at the optimal price. The price impacts firm value

9In Appendix E, we extend this framework adding a model of the labor market to endogenize the wage
w.

10The invariant distribution is obtained by solving F̄ (z) =
∫ z̄

z
F (z|x)dF̄ (x) for all z ∈ [z, z̄].

11See Nakamura and Steinsson (2011) for a model of pricing with customer markets where a commitment
to a price path can be sustained in equilibrium.
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through two channels. First, it affects the level of profits per customer as in standard models

of firm pricing. Given our assumption of single-peakedness of the profit function π(p, z), there

is a unique level of p that maximizes the profits per customer. Second, the price p affects

the dynamics of the customer base. In fact, it influences the mass of customers buying from

the firm in the current period, and, if there is persistence in the evolution of the customer

base, the mass of customers buying from the firm in future periods. As a result, the pricing

problem of the firm is dynamic in nature.

We study an environment where there is persistence in the customer base, as in Phelps

and Winter (1970) and Rotemberg and Woodford (1999). These models assume a functional

form for the evolution of the customer base where the mass of customers served by a firm

is given by the product of its original customer base and a growth rate, which depends on

its (relative) price. Our conjectured law of motion for customers preserves this standard

structure and is given by:

M(m, p, z) ≡ m∆(p, z) . (5)

This similarity notwithstanding, there are two important innovations that we introduce.

First, while the customer evolution is typically characterized with ad-hoc functional form

assumptions, our ∆(·) function is endogenous and results from the solution to a game between

the firm and its customers. It depends on the equilibrium distribution of prices as well as on

the distributions of productivity and search costs. Accounting for this dependence matters

for the estimation where we will match micro moments obtained from customers’ decisions.

Moreover, it has important implications when using the model for policy experiments, as we

will illustrate with the application in Section 5.

Second, we generalize the law of motion so that it can depend not only on the price the

firm sets but also on its productivity. This extension allows us to to study the mapping from

the distribution of productivities to the distribution of prices. It also proves useful when we

bring the model to the data, since having heterogeneity in productivity helps us to match

the cross-sectional variation in prices. Our formulation does, however, share an important

feature with classic customer market models: the growth rate of the customer base does not

depend on the initial mass of customers. This property allows for a substantial simplification

of the firm’s problem. In particular, it can be obtained that the value function of a firm

is homogeneous of degree one in m, i.e. W̃ (z,m) = m W̃ (z, 1) ≡ m W (z), where using
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equation (4) and M(m, p, z) = m∆(p, z), it is immediate to show that W (z) solves12

W (z) = max
p

∆(p, z) π(p, z) + ∆(p, z) β (1− q)

∫ z̄

z

W (z′)dF (z′| z) , (6)

where q ≡ κ+ δ− κ δ is the probability of exogenous dissolution of the firm-customer match

due to either firm or customer random exit. The relevant state to the firm pricing problem is

its productivity, as the level of the customer base affects the firm value multaplicatively. The

solution to the firm problem in equation (6) gives an optimal pricing strategy that depends

on productivity and we denote by p̂(z).

We emphasize that, while the initial level of the customer base does not affect the optimal

price, its evolution does. This follows as a change in the price affects the growth rate of the

customer base, i.e., the value of ∆(p, z), and given the persistence of the customer base, it

affects the firm value in the current period as well as in future periods. Our framework is

well suited to capture the relationship between firm prices and customer dynamics when this

is driven by variation in idiosyncratic productivity; extending it to encompass how firm size

affects this relationship is an interesting direction for future research.13

The objective of the firm maximization problem can be expressed as the product of two

terms, W (z) ≡ ∆(p̂(z), z) Π(p̂(z), z), where Π(p, z) denotes the expected present discounted

value of each customer to the firm. Under the assumption that the functions ∆(p, z) and

π(p, z) are differentiable in p, the first order condition to the firm problem is given by

∂Π(p, z)

∂p

p

Π(p, z)
= − p

∆(p, z)

∂∆(p, z)

∂p
, (7)

where we define εm(p, z) ≡ ∂ log(∆(p, z))/∂ log(p) as the extensive margin elasticity of de-

mand. We will discuss conditions under which equation (7) is necessary and sufficient in

Section 3.3. The function Π(p, z) is maximized at the static profit maximizing price,

p∗(z) ≡ εd(p)

εd(p)− 1

w

z
, (8)

where we define εd(p) ≡ ∂ log(d(p))/∂ log(p) as the intensive margin elasticity of demand.

Equation (7) implies however that, due to concerns about customer dynamics, the optimal

price is in general different from the one that maximizes static profits.

12Under the assumption that the discount rate beta is low enough so that the maximization operator in
equation (6) is a contraction, by the contraction mapping theorem we can conclude that our conjecture about
homogeneity of W̃ (z,m) is verified.

13Incidentally, our setup lends itself well to the data we use for the estimation where we observe prices
from several firms but the customer base of only one chain. See section 2 for details.
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If the growth in the customer base is non-increasing in the price, equation (7) implies that

setting a price above the static profit maximizing price is never optimal. Hence, p̂(z) ≤ p∗(z)

for all z. Moreover, if the growth in the customer base is strictly decreasing in the price

in a neighborhood of the static profit-maximizing price p∗(z), the optimal price is pushed

downwards with respect to it, i.e. p̂(z) < p∗(z). The first order condition in equation (7)

illustrates the trade-off the firm faces when setting the price in a region where customer

retention is a concern. The optimal price balances the marginal benefit of an increase in price

(more profit per customer) with the cost (decrease in the customer base). The requirement

that the solution to the firm problem must satisfy the first order condition implies that we

study equilibria where the firm objective, and in particular ∆(p, z), is differentiable in p. In

Section 3.3, we will derive the necessary equilibrium properties that guarantee that these

properties are satisfied.

3.2 The problem of the customer

Customers value the good sold by the firms described in the previous section according to

the function v(p), denoting the customer surplus associated to the demand function d(p).

We assume that v(p) is continuously differentiable with v′(p) < 0, and bounded above with

limp→0+ v(p) <∞. These properties are satisfied in standard models of consumer demand.

Each customer starts the period in the customer base of the firm she bought from in

previous period. At the beginning of every period, a customer can be randomly reallocated

to a new entrant because either the firm she was matched with exited (with probability κ) or

with probability δ the customer herself leaves for random reasons (for instance she moved to

a different city). We allow for random exit to acknowledge that price dynamics, the object

we study in detail in this paper, are unlikely to account for all the exits observed in the data.

Conditioning on a firm surviving, random exit is i.i.d. across customers of that firm.

After random relocation has taken place, the customer observes perfectly the state of the

firm she is matched to; in particular she observes its productivity. Given the equilibrium

pricing function of the firm, this allows her to assess the probability distribution of the

path of prices of that firm. After observing the state of her current match, the customer

decides whether she wants to pay a search cost to draw another firm. The search cost

ψ ≥ 0 is measured in units of customer surplus, it is idiosyncratic to each customer and

it is drawn each period from a cumulative distribution G(ψ), with an associated density

g(ψ). For tractability, we restrict our attention to density functions that are continuous on

all the support. Heterogeneity, albeit transitory, in search costs makes the customer base a

continuous function of the price and allows us to study firms’ pricing decisions that are not

necessarily knife-edge in the trade-off between maximizing demand and markups.
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Figure 2: The problem of a customer matched to a firm with productivity z

Observes productivity
and price (z and p̂(z))

Draws search
cost (ψ)

No Search
v(p̂(z))

Search

Draws new
supplier znew

No Exit v(p̂(z))− ψ

Exit
v(p̂(znew))− ψ

The customer can search at most once per period. Search is random, with the probability

of drawing a particular firm being proportional to its customer base m. As in Fishman and

Rob (2005), this assumption captures the idea that consumers search for new suppliers not by

randomly sampling firms but by randomly sampling other consumers. On the technical side,

this is the key assumption that will allow us to solve for an equilibrium where the value of a

firm scales up multiplicatively with its customer base. Conditional on searching, the customer

observes the state of the new match and then makes another decision concerning whether

to exit the customer base of her initial firm and match to the new firm. In particular, the

customer compares the distribution of the path of current and future prices at the two firms

and buys from the firm offering higher expected value. Finally, we assume that a customer

cannot recall a particular firm once she exits its customer base. Figure 2 summarizes timing

and payoffs of the problem of the customer.

We next characterize the customer problem. Let V (p, z, ψ) denote the value function of

a customer i who has drawn a search cost ψ and is matched to firm j, which has current

productivity z and posted price p. This value function solves the following problem,

V (p, z, ψ) = max
{
V̄ (p, z) , V̂ (p, z)− ψ

}
, (9)

where V̄ (p, z) is the customer’s value if she does not search, and V̂ (p, z) − ψ is the value if

she does search. The value in the case of not searching is

V̄ (p, z) = ξ v(p) + β (1− q)EG

[∫ z̄

z

V (p̂(x), x, ψ′) dF (x|z)
]

+ β qEG

[∫ z̄

z

V (p̂(x), x, ψ′) dF̄ (x)

]
,

(10)
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where ξ is an utility shifter set equal to 1 in our steady state analysis.14 We notice that the

state of the firm problem depends on the productivity z because the pricing function p̂(·)
mapping future productivity into prices in the Markov equilibrium makes productivity z a

sufficient statistic for the distribution of future prices at the firm. We also notice that the

state of the firm problem includes the current price p, despite the fact that in equilibrium

productivity is enough to determine the current price, as this notation is needed to study the

game between the firm and its customers where the firm could, in principle, deviate from the

equilibrium price. Finally, the expectation operator EG[·] refers to the realization of future

search costs which are drawn from the i.i.d. distribution G. The value function V̄ (p, z) is

strictly decreasing in p and increasing in z.

Given the specifics of the search technology, the value to the customer if searching is given

by

V̂ (p, z) =

∫ +∞

−∞
max

{
V̄ (p, z) , x

}
dH(x) , (11)

where the customer takes expectations over all possible draws of potential new firms, and

where H(·) is the equilibrium cumulative distribution of continuation values from which the

firm draws a new potential match when searching.

We are now ready to describe the customer’s optimal search and exit policy rules. Such

policies are characterized by simple cut-off rules. The customer matched to a firm with

productivity z charging price p searches if she draws a search cost ψ ≤ ψ̂(p, z), where

ψ̂(p, z) ≡
∫ ∞

V̄ (p,z)

(
x− V̄ (p, z)

)
dH(x) ≥ 0

is the threshold to search. Conditional on searching, the customer exits if she draws a new

firm promising a continuation value V̄ new larger than the current match, i.e. V̄ new ≥ V̄ (p, z).

Notice that the threshold ψ̂(p, z) is strictly increasing in p. The dependence on the price is

straightforward, following from its effect on the surplus v(p) that the customer can attain

in the current period. The intuition behind the dependence on the firm’s productivity is

that, as searching is a costly activity, the decision of which firm to patronize is a dynamic

one, and involves comparing the value of remaining in the customer base of the current firm

with the value of searching. Because of the Markovian structure of prices, the customer’s

expectation about future prices is completely determined by the firm’s current productivity.

We notice that if the continuation value is increasing in z (a sufficient condition is that p̂(z)

is decreasing) then the threshold ψ̂(p, z) is decreasing in z.

14We will study the response of the economy to a shock to ξ in Section 5.
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3.3 Equilibrium

In this section we define an equilibrium, discuss its existence, and characterize its general

properties. First we derive the equilibrium dynamics of the customer base as a function of

price and productivity, given the optimal search and exit strategy of the customers. Given

customers’ optimal decision rule, the mass of customers buying from a firm with productivity

z and charging price p is given by M(m, p, z) = m∆(p, z), with

∆(p, z) ≡ 1−G
(
ψ̂(p, z)

)(
1− H(V̄ (p, z))

)
︸ ︷︷ ︸

customer outflow

+Q
(
V̄ (p, z)

)
︸ ︷︷ ︸
customer inflow

, (12)

where G(ψ̂(p, z)) is the fraction of customers searching from the firm customer base, a frac-

tion 1−H(V̄ (p, z)) of which actually finds a better match and exits the customer base of the

firm. The mass m is the probability that searching customers in the whole economy draw the

firm as a potential match. The function Q(V̄ (p, z)) denotes the equilibrium mass of searching

customers currently matched to a firm with continuation value smaller than V̄ (p, z). There-

fore, the product mQ(V̄ (p, z)) amounts to the mass of new customers entering the customer

base. Equation (12) verifies the conjecture about the equilibrium customer dynamics made

in Section 3.1.

We are now ready to define and discuss the equilibrium. We study equilibria where the

continuation values to customers is non-decreasing in productivity, implying that customers’

rank of firms coincides with their productivity. This is a natural outcome as more productive

firms are better positioned to offer lower prices and therefore higher values to customers.

Definition 1 Let V(z) ≡ V̄ (p̂(z), z) and p∗(z) be given by equation (8). We study stationary

Markovian equilibria where V(z) is non-decreasing in z and p̂(z) ≥ p∗(z̄) for all z ∈ [z, z̄]. A

stationary equilibrium is then

(i) search and exit strategies that solve the customer problem in equations (9)-(11);

(ii) a firm pricing strategy p̂(z) that solves equation (7) for each z;

(iii) a customer base for new entrant firms m0 = q/κ, with q = κ + δ − κ δ;

(iv) a dynamic of the customer base at a surviving firm with productivity z given by

m′ = (1− δ)∆(p̂(z), z)m, where ∆(·) is given by equation (12);

(v) an invariant distribution of customers K(·) over productivities, that for each z solves

K(z) = (1− q)

∫ z

z

∫ z̄

z

∆(p̂(x), x) dF (s|x) dK(x) + q

∫ z

z

dF̄ (x) ;

18



(vi) two invariant distributions, H(·) and Q(·), that solve

H(x) = K(ẑ(x)) and Q(x) =

∫ ẑ(x)

z

G(ψ̂(p̂(z), z)) dK(z) ,

for each x ∈ [V(z),V(z̄)], where ẑ(x) = max{z ∈ [z, z̄] : V(z) ≤ x}.

The next proposition states conditions under which the equilibrium that we evaluate

exists and characterizes some of its properties.

Proposition 1 Let productivity be i.i.d. with F (z′|z1) = F (z′|z2) continuous and differen-

tiable for any z′ and any pair (z1, z2) ∈ [z, z̄], and let G(ψ) be differentiable for all ψ ∈ [0,∞),

with G(·) differentiable and not degenerate at ψ = 0. There exists an equilibrium as in Defi-

nition 1 where p̂(z) satisfies equation (7), and

(i) p̂(z) is strictly decreasing in z, with p̂(z̄) = p∗(z̄) and p∗(z̄) < p̂(z) < p∗(z) for z < z̄,

implying that V(z) is strictly increasing. Moreover, the optimal markups are given by

µ(p, z) ≡ p

w/z
=

εd(p)

εd(p)− 1 + εm(p, z) Π(p, z)/(d(p) p)
, (13)

where p = p̂(z) for each z.

(ii) ψ̂(p̂(z), z) is strictly decreasing in z, with ψ̂(p̂(z̄), z̄) = 0 and ψ̂(p̂(z), z) > 0 for z < z̄,

implying that ∆(p̂(z), z) is strictly increasing, with ∆(p̂(z̄), z̄) > 1 and ∆(p̂(z), z) < 1.

The proof of the proposition can be found in Appendix A. Here we just point out that, while

the results of Proposition 1 refer to the case of i.i.d. productivity shocks, numerical results

in Section 4 show they hold even in the case of persistent productivity processes.

We now comment on the properties of the equilibrium highlighted in the proposition.

The equilibrium is characterized by price dispersion: this is important, as price dispersion

is what motivates customers to search. Price dispersion is driven by heterogeneity in firm

productivity, as in Reinganum (1979), and by the level and dispersion of search frictions.15

More productive firms charge lower prices and, therefore, offer higher continuation value to

customers. If all the firms had the same productivity, Proposition 1 would imply a unique

equilibrium where the price is that maximizing static profits, p∗(z), and as a result the

customer base of every firm would be constant.16 The equilibrium is also characterized by

15For tractability we will abstract from (possible) equilibria where symmetric firms charge different prices.
16This special case is useful to understand our relation to Diamond’s (1971) results. Our model delivers

equilibrium price dispersion as a result of heterogeneity in productivity. If productivity was homogeneous as
in Diamond (1971) the monopoly price would be the only equilibrium price.
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dispersion in customer base growth: more productive firms grow faster, and there is a positive

mass of lower productivity firms that have a shrinking customer base and a positive mass of

higher productivity firms that are expanding their customer base.

Optimal markups in equation (13) depend on three distinct terms: εd(p), εm(p, z), and

π̄(p, z) ≡ Π(p, z)/(d(p) p). The terms εd(p) and εm(p, z) represent the price elasticities of

quantity purchased (per-customer) and of customer growth, respectively. We notice that the

elasticity of total firm demand to the price, i.e. m∆(p, z) d(p), is given by εd(p)+εm(p, z). An

increase in price reduces total current demand both because it reduces quantity per customer

(intensive margin effect) and because it reduces the number of customers (extensive margin

effect). Moreover, the optimal markup solves a dynamic problem as a loss in customers has

persistent consequences for future demand due to the inertia in the customer base. This

dynamic effect is captured by the term π̄(p, z), which measures the firm present discounted

value of a customer scaled by the current revenues. It follows that active customer markets

are associated with a strictly lower markup than the one that maximizes static profit; the

lower the markup, the larger the product εm(p, z) π̄(p, z).

Finally, it is useful to discuss two interesting limiting cases of our model reported in the

following corollary (see Appendix B for a proof).

Corollary 1 Let search costs be scaled as ψ ≡ n ψ̃, where n > 0. That is, let the value

function in equation (9) be max
{
V̄ (p, z) , V̂ (p, z)− nψ̃

}
. Let π(p∗(z̄), z) > 0 and the as-

sumptions of Proposition 1 be satisfied.

(1) Let n → ∞. Then: (i) the optimal price maximizes static profits, i.e. p̂(z) =

p∗(z) for all z ∈ [z, z̄], and (ii) there is no search in equilibrium.

(2) Let n → 0. Then, (i) there is no price dispersion, i.e. p̂(z) = p∗(z̄) for all z ∈ [z, z̄],

and (ii) there is no search in equilibrium.

These two limiting cases highlight the tight relationship between size of the search cost,

competition for customers and price dispersion. The first limiting case concerns the equi-

librium when we let search costs diverge to infinity. The model then reduces to one where

customer base concerns are not present. Because the customer base is unresponsive to prices,

the firm problem reverts to a standard price-setting problem commonly studied in the macroe-

conomics literature: the firm sets the price p, taking into account only its impact on static

demand d(p). In equilibrium, optimal prices maximize static profits, i.e. p̂(z) = p∗(z) for

all z ∈ [z, z̄]. There is price dispersion, and there is no search in equilibrium. The second

limiting case concerns the equilibrium when search costs become arbitrarily small. In this

case, as the scale of search costs becomes arbitrarily small, equilibrium prices approach the
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static profit maximizing price of the most productive firm, p̂(z̄). As a result, there is no price

dispersion and customers do not search.

3.4 Parametrization of the model

To quantify our model, we need to make parametric assumptions and pick parameter values.

In Section 2, we present data which we use to guide our parameter choice. Here, we present

our functional form assumptions and discuss the calibration of parameters on which our data

provide no information.

We assume that a period in the model corresponds to a month. The choice of the time

period is not without loss of generality as it determines the lower bound with which consumers

search for a new firm. Given the relatively infrequent customer switching across stores in

the data, we think the monthly frequency is a reasonable choice. We fix the discount rate

to β = 0.9958 and set the firm exit rate κ = 0.0083, corresponding to a yearly firm exit

rate of 10%. Such number is in the range of estimates reported by Dunne et al. (1988) for

U.S. firms, albeit on high side. We use a relatively high firm exit rate to compensate for

the absence in our model of customer returning to a previously visited store, which would

reduce the incentives to retain a customer. We assume that consumers have preferences over

consumption c given by c1−γ/(1− γ). Consumption is defined as a composite of two types of

goods c ≡
[
d

θ−1
θ + n

θ−1
θ

] θ
θ−1

, with θ > 1 governing the demand elasticity. The first good (that

we label d) is supplied by firms facing product market frictions as described in this section;

the other good (n) acts as a numeraire and it is sold in a frictionless centralized market. The

customer budget constraint is given by p d+ n = I, where I is the agent’s nominal income,

which we normalize to one.17 We set the nominal wage equal to the price of the numeraire

good, so that w = 1.18 As a result, we obtain a standard downward sloping demand function

d(p) = I/P (p/P )−θ where P = (p1−θ + 1)
1

1−θ is the price of the consumption basket. We set

θ so that the average elasticity of demand (including both extensive and intensive margins) is

equal to 4, in the range of values standard in the macro literature (see Burstein and Hellwig

(2007) for a discussion) and similar to the average across the product categories reported in

Chevalier et al. (2003) who, like us, analyze grocery products.19

We assume that the logarithm of idiosyncratic firm productivity evolves according to an

AR(1) process, log(z′) = ρ log(z) + ε, where ε is i.i.d. normally distributed, ε ∼ N(0, σ).20

17In Appendix E we show that I can be derived based on a model of the labor market.
18 This is equivalent to assume that the numeraire good n is produced by a competitive representative firm

with linear production function and unitary labor productivity. See Appendix E for details.
19The average elasticity of demand is obtained by summing over the intensive and extensive margins at

the firm level, and then aggregating over firms:
∫ z̄

z
[εm(p̂(z), z) + εd(p̂(z))] dK(z).

20Operationally, we approximate the AR(1) through a discrete Markov chain with a methodology proposed
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The productivity process influences the variability of prices, which is necessary for customers

to obtain any benefit from search. Our theoretical model describes how persistence and

volatility of productivity (ρ and σ, respectively) determine autocorrelation and volatility of

the resulting firm prices. We therefore estimate ρ and σ by matching the autocorrelation and

the volatility of the logarithm of firm prices observed in the data. We target the dispersion and

autocorrelation of log-prices posted by firms and estimated by Kaplan and Menzio (2015). In

particular, they report a probability of remaining in the same quartile of the price distribution

to be approximately 0.4 at yearly horizon, which allows us to estimate ρ. They estimate the

cross-sectional price dispersion for identical products associated to the store-good component

to be 0.047. Matching these moments in our model implies σ = 0.10 and ρ = 0.95.21

Finally, we assume that customers draw their search cost from a Gamma distribution

with shape parameter ζ , and scale parameter λ. The Gamma is a flexible distribution and

fits the assumptions we made over the G function in the specification of the model. In

particular, for ζ > 1, we obtain that the distribution of search costs is differentiable at

ψ = 0.22 The parameter λ governs the scale of the search cost distribution. A higher λ

implies higher search cost on average and lower propensity to search of customers (see the

discussion in Section 3.3). Thus, the parameter λ speaks directly to the size of the extensive

margin elasticity of our model, and we estimate it by matching an average yearly customer

attrition rate of 15 percent per year. Such number is in the middle of the range of estimates

reviewed by Gourio and Rudanko (2014) for different sectors - the range is 10-25 percent - and

comparable to the yearly exit rate obtained from our analysis in Section 2 (22% on a yearly

basis). The parameter ζ measures the inverse of the coefficient of variation of the search

cost distribution: the larger ζ , the flatter the density. A price increase raises the search cost

threshold determining the customer indifferent between searching and not searching (ψ̂(z)),

and triggers an increase in the mass of customers searching (G(ψ̂(z))). We calibrate ζ so that

the model matches the dispersion in log-prices paid by customers as reported by Kaplan and

Menzio (2015), and equal to 0.052. This is the equivalent of the dispersion of posted prices,

but weighted by the distribution of customers over products rather than by the distribution

of firms. In our model the difference between the two distributions is determined by the

extent of customer searching and reallocation to lowest price firms (See Figure 5 below).

This procedure delivers λ = 0.73 and ζ = 1.75.23

by Tauchen (1986).
21See Tables 2, 3, and 4 in Kaplan and Menzio (2015)
22In the estimation procedure we will discuss later we do not impose any constraints on the values the

parameter ζ can take. Our unconstrained point estimate lies in the desired region.
23This parametrization gives an aggregate disutility from searching equivalent to a 0.1% reduction in

monthly income.
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4 Price and customer dynamics

In this section we illustrate the properties of our model using the parametrization introduced

in Section 3.4. We illustrate the implications for the two main aspects of interest of our

analysis -the distribution of prices and the evolution of the customer base across firms- and

explain how they derive from the presence of the extensive margin of demand associated to

consumers searching, and how it affects the price pass-through of idiosyncratic shocks. We

compare the qualitative model prediction with the available empirical evidence to suggests

that the mechanism we analyze may have an important role in shaping real world outcomes.

Price dynamics. In Figure 3, we plot the standardized price distribution in our economy.

To aid the discussion, we also include the standardized productivity distribution, which would

coincide with the price distribution in a standard monopolistic economy with no customer

markets, when firms charge a constant markup over marginal cost. The difference between

the two distributions is apparent. If markups were constant, the price distribution would

resemble the marginal cost distribution, and hence a truncated normal by assumption. The

presence of competition for customers instead distorts the price distribution generated in

our model away from the distribution of the productivity shocks. In particular, the price

distributions displays excess kurtosis: it has fat tails and at the same time high clustering

around the mean.

To understand the driver behind the particular shape of the price distribution, it is useful

to look at panel (a) of Figure 4, which plots the equilibrium price as a function of productivity.

The relationship is flat at intermediate levels of productivity and steep at low and high levels

of productivity. It follows that our model delivers two implications related to the pass-through

of idiosyncratic productivity shocks: i) the pass-through is incomplete; ii) the pass-through is

heterogeneous in productivity: high for firms in the right and the left tail of the productivity

distribution and low for firms of average productivity. The heterogeneity in the pass-through

is at the root of the shape of the price distribution: high and low productivity firms populate

the tails of the price distribution; whereas the low pass-through for firms at intermediate

levels of productivity determines the clustering of prices around the mean. The implied

markups (panel (b)) are increasing in productivity. The average markup is 14% but there is

wide variation: the most productive firms enjoy margins up to over 30%. Interestingly, low

productivity firms have negative markup (as low as −10%). This outcome can be explained

by the persistence of the productivity process. Since productivity is not overly persistent,

even low productivity firms can hope to improve fast. This provides a rationale to endure

negative markups and prevent customers from leaving so to make larger profits when the

firm’s productivity will be higher.
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Figure 3: The distribution of prices

Standardized Value: (x− E[x])/SD[x], for x = log(p) and x = log(z)
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Notes: In the figure, we plot the distribution of the prices implied by our economy (blue line), as well as the distribution of
productivity (dotted red line). Both objects are appropriately normalized to allow comparability.

Both the markup and the pass-through behavior are explained by the shape of the pricing

function, which is in turn determined by the extensive margin elasticity (panel (c)).24 The

most productive firms face low risk that customers will leave since they offer high expected

value to their customers relative to the average firm, so that the threshold to search is lower

(panel (d)). As a result, a low fraction of their customers is searching -and an even lower

fraction ends up exiting the customer base: only customers drawing tiny search costs will

search and among those the ones that exit need to find a better match in order to exit. This

combination is a low probability event, roughly insensitive to small variations in productivity

because the estimated density of search costs has little mass close to the origin. This means

that variations in the threshold to search are associated to small variations in the mass of

customers searching. Therefore, these firms face low extensive margin elasticity and can

afford nearly complete pass-through and enjoy hig markups.

As productivity decreases, the threshold to search, as well as the probability of drawing

a better match, increase. Price variations (which affect the search threshold) are associated

with significant changes in the mass of customers searching. Therefore, firms with productiv-

ity around the average face high extensive margin elasticity and , as equation (13) dictates,

24Equation (13) implies that optimal prices also depend on the intensive margin elasticity (εd) and the
value of a customer (π̄). Their role is however quantitatively small. Therefore, here we concentrate only on
the role of the extensive margin of demand.
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Figure 4: Equilibrium price dynamics

(a) Pricing function (b) Markups
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markups as a function of productivity. In panel (c) we plot the density of search costs. In panel (d), we plot the threshold below
which consumers search.

will offset increases in production cost with reduction in markups. This explains the flatness

of the pricing function in that region. Finally, as productivity approaches the left tail of the

distribution, the extensive margin elasticity flattens again. This happens because customers

paying higher prices at lower productivity firms substitute towards the numeraire good (good

n). Therefore, everything else being equal, variations in the price of the good with product
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market friction (good d) have less of an impact on the utility of these customers.25

The comparison between the pricing behavior predicted by our model and empirical ev-

idence on real world pricing provides comforting results. First and foremost, the distinctive

characterization of an excess kurtosis price distribution is in line with the finding in Kaplan

and Menzio (2015), who have documented that this is a robust feature of retail good prices.

Evidence on the incomplete price pass-through is mostly based on exchange rate variation

(see Burstein and Gopinath (2013) for a review). We estimate a price pass-through of about

25% on average to idiosyncratic productivity shocks. If we were to simulate a pass-through

of an exchange rate shock such number would represent a lower bound as the exchange rate

pass-through would depend on how many firms are hit by the shock. For instance, in the

polar case where all firms are hit by the exchange rate shock, the price pass-through would

be complete. Hence, a key ingredient for incomplete price pass-through in our model is the

fraction of firms whose production cost is hit by an exchange rate shock (e.g. the fraction

of foreign firms). Finally, hard evidence on the relationship between pass-through and firm

productivity is scant. However, our finding of a U-shaped relationship matches the results in

Garetto (2016) and Auer and Schoenle (2016).

Customer dynamics. In Figure 5 we illustrate the predictions of our model regarding

customer dynamics. In the left panel we plot the fraction of customers searching -and thus

potential exiting the customer base of a firm- as a function of the productivity z of the

firm the customer is matched to. There is substantial variation in the fraction of customers

searching. Firms with high productivity have less than 0.5% of their customers searching for

a new firm every period, and even less exiting as there are few firms offering higher value

to this customers. Firms with low productivity can have up to 2.5% of their customers

searching for a new firm every period, and because many firms have higher productivity and

lower prices, low productivity firms can see their customer base erode significantly. Hence,

as the figure in the right panel shows, customer reallocations has the effect of shifting the

distribution of customers across productivity levels to the right of the distribution of firms

across productivity.

Even in this case, checking the model predictions with actual data evidence yields a

favorable outcome. Recent literature has emphasized the role of the customer base as an

important and persistent determinant of the level of firm demand (Foster et al. (2008),

Foster et al. (2016)). Our findings are fully consistent with this view. In fact, Table 2 reports

in the top row the probability that a firm in the top 25% of the distribution of demand is

25Notice that the threshold to search at low productivity firms is in the increasing part of the density of
search cost, so the flattening of the extensive margin elasticity at low productivity is not due to a smaller
mass of customers exiting at the margin.
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still in the same quartile after 1 month, 1 quarter and 1 year, respectively. The bottom row

shows the same statistics for the bottom 25% of the distribution. We look at two different

outcomes: total sales (left panel) and productivity (right panel). The latter can be linked to

the intensive margin of demand d(p): each customer expands or contracts her demand for the

customer market good depending on the price she faces, the persistence of which only depends

on productivity. The total demand for the firm, however, is the sum of the demands of all

of its customers. Even firms with declining productivity, which will post higher prices and,

therefore, see their demand per customer shrink, can have strong total demand if they have

a large base of customers. Our statistics do show that firm level demand is very persistent,

much more so than the underlying exogenous process of firm productivity. For instance, a

firm in the top 25% of the demand distribution is more that 83% likely to stay in the same

group after a quarter; whereas a firm in the top 25% of the distribution of productivity only

has a 45% chance of staying in the same group after one quarter. We also find asymmetry in

persistence between the top and bottom quartiles of the distribution of demand: persistence

at the bottom is stronger than persistence at the top. This happens because low ranked

sellers have on average low productivity and lose customers at a faster rate than that at

which high productivity firms, i.e. top sellers, gain them.

Figure 5: Equilibrium customer dynamics
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Table 2: Persistence of demand

Total sales: d×m Productivity: z
1 month 1 quarter 1 year 1 month 1 quarter 1 year

Top 25% 0.89 0.83 0.70 0.49 0.45 0.32

Bottom 25% 0.91 0.86 0.76 0.49 0.45 0.32

Notes: The top row reports the probability that a firm in the top quartile of the sales distribution stays

there after 1 month, 1 quarter and 1 year. The bottom row displays the same statistics for the bottom

quartile of the distribution. We report separately the results for the distribution of total sales (left panel)

and for the distribution of productivity (right panel). The statistics are obtained by simulating our baseline

economy with parameters described in Section 3.4.

5 The propagation of demand shocks to prices

Starting with Phelps and Winter (1970), the role of customer markets in shaping aggre-

gate dynamics, in particular regarding the propagation of demand shocks (Rotemberg and

Woodford (1991, 1999)), has been actively debated. In this section we show that fluctua-

tions in the cost opportunity of search generate sizable variation in price markups which can

potentially amplify the effect of aggregate demand shocks on output and the comovement

between employment and output even in absence of sticky nominal prices. Aggregate demand

shocks that shift the utility from consumption, or the disutility from searching, feedback to

firms’ markups through their impact on consumers’ incentives to search for suppliers with

lower prices and, therefore, on demand elasticity to price. Periods with higher marginal

utility of consumption, or disutility of search, are characterized by higher demand elasticity,

lower markups and, therefore, higher demand. Moreover, heterogeneity in the propensity of

consumers to search across the different firms implies that aggregate shocks will have dif-

ferent impact on their pricing decisions and consumer dynamics. At our calibration, firms

with lower productivity (and higher prices) respond more to the aggregate demand shock,

reducing price and consumption dispersion when propensity to search increases.

We illustrate this point by analyzing two different types of aggregate shocks commonly

considered in the literature. First, we simulate the effect of a direct shock to the disutility

of shopping (i.e. to the cost of searching). The implications of this exercise are relevant as a

growing literature suggests that movements in the cost opportunity of search affect business

cycle analysis (Bai et al. (2012)). Second, we consider a preference shock shifting the utility

of consumption. The preference shift, although not affecting directly the search margin, has

an indirect impact on shopping behavior. Therefore, we show that our mechanism influences
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the transmission also for this standard type of demand shocks. We find that in both cases a

positive shock triggers a spike in the competition for customers strong enough to make prices

fall. Hence, the effect on aggregate demand is amplified.

We consider our baseline economy in steady state at t = t0, calibrated as described in

Section 3.4, and we augment the model to endogenize household income I and to accom-

modate shocks to the aggregate state. In particular, we consider the dynamics following an

unforeseen aggregate shock that takes the economy temporarily away from the steady state

and assume that after the shock has hit, there is perfect foresight in the path of the aggregate

state. This experiment requires to extend the model to allow for the aggregate state varying

over time. Therefore, the key equations of the model will now be indexed by a time subscript

t, capturing the dynamics in the aggregate state.26

As we want to study the effects of aggregate shocks in general equilibrium, we also need to

endogenize household income. We do so by adding a simple model of a perfectly competitive

labor market, where the household trades off (linear) utility from leisure with labor income.

The household takes the wage as given, and the wage is determined in a centralized market

to clear labor demand. We assume that the representative household is divided into a mass

one of shoppers and a representative worker. The worker takes care of supplying labor in the

perfectly competitive labor market, and then shares labor income equally across the shoppers

who instead take care of buying goods according to the model described in Section 3.27 The

expected discounted utility of the household is given by

∞∑
T=t

βT−t
[∫ 1

0

C(z(i); IT )1−γ
1− γ

di− ξT

∫ 1

0

ψ(i)S(z(i), ψ(i); IT ) di− φ �T

]
, (14)

where C(z(i); IT ) is the consumption of a shopper i matched to a firm with productivity z(i),

after search decisions are taken; S(z(i), ψ(i)) is an indicator variable equal to one if shopper

i with search cost ψ(i) and matched to a firm with productivity z(i) decides to search, and

equal to zero otherwise; ξT is an aggregate shock to the disutility of shopping; φ > 0 captures

the disutility from working. The worker chooses the path of labor supply �t that maximizes

household utility in equation (14) under perfect foresight. In particular the worker trades off

higher disutility of labor �t with higher labor income wt �t to be distributed equally across all

shoppers, so that total income available to shoppers is given by It = wt �t+Dt, where Dt are

firms profits rebated to the households. The worker internalizes the impact that higher labor

income will have on the shoppers’ decisions both in terms of search activity and consumption

26Additional details on how we augment the model to study aggregate shocks are provided in Appendix E.
27We are implicitly assuming that the worker cannot discriminate across the different shoppers. This

assumption reduces the dimensionality of the problem, removing heterogeneity in income across consumers.
This is a common shortcut in the literature (see Shi (1997)).
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allocation, but cannot discriminate across shoppers, so that she has to divide labor proceeds

equally across shoppers. The mappings from income IT to the distributions of consumption

C(z(i); IT ) and search activity S(z(i), ψ(i); IT ) are obtained from the solution of the model in

Section 3. For simplicity we assume that individual shoppers are not allowed to save, whereas

representative households do not save in equilibrium given assets are in zero net supply.

The production technology of the good sold in the perfectly competitively market (good n)

is linear in labor, with unitary productivity. Perfect competition in the market for good n and

in the labor market implies that workers are paid a wage equal to the marginal productivity

of labor so that wt = qt for all t, where qt is the price of good n. We use good n as a numeraire

and set qt = 1.

We denote by ξt an aggregate shock to the disutility from shopping. After the shock

is realized, ξt mean reverts to its steady state value of 1 following an AR(1) process, i.e.

log(ξt) = ρξ log(ξt−1) with ρξ < 1 for t > t0.
28 Figure 6 plots the impulse responses of several

variables of interest to a 10% reduction in the disutility from shopping, setting ξt0 = 0.9 with

ρξ = 0.98 implying a half life of about three years. The size of the shock and its persistence

is comparable to estimates obtained by Bai et al. (2012).

The reduction in the disutility of shopping leads to a fall in prices paid by consumers

(panel (a)) which causes the increase in aggregate demand (panel b)). The shock makes it

less costly for consumers to search; as a consequence the decision to search is more responsive

to price (panel (c)). The fact that more customers may be looking for a new supplier increases

customer retention concerns for firms, particularly for the less productive ones, inducing them

to further lower their markups. The increase in competition (which increases the extensive

margin elasticity of demand) more than compensate for the fact that lower markups implying

that the value of retaining customers (π̄, panel (d)) falls. Hence the average price falls and

demand rises in response to the shock.

Figure 7 highlights the heterogeneity in firms’ response to the aggregate shock by dis-

playing the impulse responses of prices and demand for firms in different quartiles of the

productivity distribution. Firms in the bottom quartile have an impulse response of prices

that is on average about twice as large as the price response of firms in the two middle

quartiles of the productivity distribution, and about ten times as large as the price response

of firms in the top quartile.

The reason why less productive firms reduce their prices the most is that, everything else

being equal, the fraction of customers searching is more elastic to variation in the cost oppor-

28Operationally, we guess the path of the distribution of customers over productivity Kt(z), and then solve
backward for the optimal pricing and customer decisions at each time t ≥ t0 as described in Appendix E
starting from the final steady state (which is identical to the initial one) at t = t0+T for some large T . Then
we update our guess about Kt(z) and iterate until convergence.
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Figure 6: Impulse responses to an aggregate fall in the cost-opportunity of shopping
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tunity at less productive firms. The shift in the disutility of search increases the threshold for

searching for all firms. The increased threshold also increases the price elasticity of demand,

the more so, the less productive firms are. As a consequence consumers matched to lower

productivity firms benefit the most from the fall in prices that follows the demand shock.

Moreover, given that firms with lower productivity post higher prices, the fact that these

firms reduce prices proportionally more following the shock reduces price dispersion, which

drops by 12% on impact of the shock. The reduction in price dispersion implies in turn a

substantial reduction of dispersion in consumption, which falls by about 13% on impact of

the shock. Thus, from a welfare perspective the aggregate demand shock has an additional

beneficial effect associated to the composition of the price response across firms. As con-

sumers matched to lower productivity firms pay a higher price and value an additional unit

of consumption more, a comovement between the size of the price reduction following the

shock and the firm productivity (or equivalently the initial price level) increases the welfare

impact of the demand shock. Quantitatively this effect on welfare is small in our model

because the utility of the different consumers enters linearly in equation (14). However, this
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Figure 7: Impulse responses to an aggregate fall in the cost-opportunity of shopping
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effect can be quantitatively significant in models where the welfare objective has some con-

cavity in the utility of the different consumers, so that dispersion in consumption is more

important.

Finally, the variation in the propensity of consumers to search does not arise only from the

particular case of shifts in cost of search, but also from changes in the benefit of search. This

can be obtained in our framework by means of a more common type of demand shock such

as a preference shock shifting the utility of consumption. There is a large literature debating

the relevance of this types of demand shocks for business cycle fluctuations (see for instance

Robert J. Barro (1984) for a discussion). We model this shock as a once and for all unforeseen
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Figure 8: Impulse responses to a preference shock to the utility of consumption
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shock that moves the utility of consumption, i.e. the function v(·) in equation (10), by a

multiplicative factor ξt = ξ̂ > 1 at t = t0, and dies out following an AR(1) process. Figure 8

plots the impulse responses of several variables of interest to the 10% shock of this type.29

Unlike the previous exercise, this shock does not directly affect the search incentives but

influences instead the consumption/leisure margin. As in standard macro models, a higher

utility of consumption relatively to the utility of leisure causes higher labor supply and higher

output. However, in our model, a higher marginal utility from consumption also increases

the benefits of searching and, therefore, firms competition for customers. This activate the

same mechanism described for the shock to the disutility of search and results in lower prices

that amplify the effect of the demand shock on output.

29We set ξt0 = 1.10 and ρξ = 0.98 to make the results of this experiment comparable with those obtained
from the shock to the disutility of shopping.
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6 Concluding remarks

Motivated by novel empirical evidence on the importance of the relationship between prices

and customer base evolution, in this paper we develop a rich yet tractable model to assess

the role that customer markets play in determining price setting. Our framework delivers

both price dispersion and customer reallocation in equilibrium providing a handy way to

quantify the relevant parameters of the model by targeting statistics on those objects. The

quantification shows that our model features predictions consistent with pattern empirically

documented by other studies. In particular, we note that the pass-through of idiosyncratic

cost shocks is incomplete and heterogeneous; the distribution of prices is characterized by

excess kurtosis and firm market share is much more persistent than firm productivity.

We use our framework to study the role of customer markets in shaping the propagation

of aggregate shocks. We experiment with the types of demand shocks shifting customers’

propensity to search and show that our microfoundation linking customer dynamics to search

and exit decisions by individual customers can lead to amplification of the effect of aggregate

demand shocks. Finally, since our framework allows for substantial heterogeneity across

firms (both in productivity and in the size of their customer base) we are able to explore

the importance of differential firm response to aggregate shocks. We find that the overall

effect is overwhelmingly due to the behavior of lower productivity firms and this reflects in

a significant reduction in the dispersion of prices and agents’ consumption.

Our study relies on a number of simplifying assumptions, whose relaxation seems of inter-

est for future research. First, for tractability we refrain from explicitly modeling persistent

heterogeneity in customers search/opportunity costs (although we control for these factors

in the empirical analysis) and we do not allow for price discrimination. The presence of cus-

tomers heterogeneity in shopping behavior is well documented (Aguiar and Hurst (2007)),

which makes studying its implications for optimal pricing and customer dynamics an im-

portant topic. Due to lack of data, we do not consider the role of advertising in generating

demand dynamics (Hall (2014)). While our conjecture is that the analysis of the pricing

incentives presented in this paper would still apply, we think that extending the analysis to

advertising, as well as to other strategies to attract and retain customers, and confront the

results with direct firm level evidence, could provide new insights about firms’ behavior.
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Appendix

A Proof of Proposition 1

The following lemma discusses some key properties of the optimal price useful to prove

Proposition 1.

Lemma 1 Let ∆(p, z) be continuous in p, and let εm(p, z) ≡ ∂ log(∆(p, z))/∂ log(p). If a

price p̄(z) exists such that εm(p, z) > 0 for all p > p̄(z), and εm(p, z) = 0 for all p ≤ p̄(z),

then we have p̂(z) ∈ [p̄(z), p∗(z)) if p̄(z) < p∗(z), and p̂(z) = p∗(z) otherwise.

The proof of the lemma is an immediate implication of equation (7). We next prove the

results of Proposition 1.

Monotonicity of prices. Monotonicity of optimal prices follows from an application of

Topkis’ theorem. In order to apply the theorem to the firm problem in equation (6) we need

to establish increasing differences of the firm objective ∆(p, z) Π(p, z) in (p,−z). Under the
standard assumptions we stated on π(p, z), it is easy to show that Π(p, z) satisfies this prop-

erty. The customer base growth function does not in general verify the increasing difference

property. However, let p̄(z) denote the price p that solves V̄ (p, z) = V(z̄). We have that

∆(p, z) is continuous, strictly decreasing in p for all p > p̄(z), and constant for all p ≤ p̄(z).

Under the assumption of i.i.d. productivity, ∆(p, z) is independent of z, which is sufficient

to obtain the result. We first show that optimal prices p̂(z) are non-increasing in z. Given,

that productivity is i.i.d. and that we look for equilibria where p̂(z) ≥ p∗(z̄), we have that

p̄(z) = p∗(z̄) for each z. From Lemma 1 we know that, for a given z, the optimal price p̂(z)

belongs to the set [p∗(z̄), p∗(z)]. Over this set, the objective function of the firm,

W (p, z) = ∆(p, z) (π(p, z) + β constant) , (15)

is supermodular in (p,−z). Notice the i.i.d. assumption implies that future profits of the

firm do not depend on current productivity as future productivity, and therefore profits, are

independent from it. Similarly, ∆(p, z) does not depend on z, as the expected future value to

the customer does not depend on the productivity of the current match as future productivity

is independent from it. Abusing notation, we replace ∆(p, z) by ∆(p). To show thatW (p, z) is

supermodular in (p,−z) consider two generic prices p1, p2 with p2 > p1 > 0 and productivities

z1, z2 ∈ [z, z̄] with −z2 > −z1. We have that W (p2, z2)−W (p1, z2) ≤ W (p2, z1)−W (p1, z1)
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if and only if

∆(p2)d(p2)(p2−w/z2)−∆(p1)d(p1)(p1−w/z2) ≤ ∆(p2)d(p2)(p2−w/z1)−∆(p1)d(p1)(p1−w/z1),

which, since ∆(p2)d(p2) < ∆(p1)d(p1) as d(p) is strictly decreasing and ∆(p) is non-increasing,

is indeed satisfied if and only if z2 < z1. Thus, W (p, z) is supermodular in (p,−z). By

application of the Topkis Theorem we readily obtain that p̂(z) is non-increasing in z.

Existence of equilibrium. Next we prove existence of an equilibrium. The fixed point

problem is a mapping from candidate functions of equilibrium prices, p̂(z), to the firm’s

optimal pricing strategy, p̂(z). Notice that W (p, z) in equation (15) is continuous in (p, z).

By the theorem of maximum, p̂(z) is upper hemi-continuous andW (p̂(z), z) is continuous in z.

Given that p̂(z) is non-increasing in z it follows that p̂(z) has a countably many discontinuity

points. We thus proceed as follows. Let P̂(z) be the set of prices that maximize the firm

problem. Whenever a discontinuity arises at some z̃ (so that P̂(z̃) is not a singleton), we

modify the optimal pricing rule of the firm and consider the convex hull of the P̂(z̃) as the

set of possible prices chosen by the firm with productivity z̃. The constructed mapping

from P(z) to P̂(z) is then upper-hemicontinous, compact and convex valued. We then apply

Kakutani’s fixed point theorem to this operator and obtain a fixed point. Finally, notice

that since the convexification procedure described above has to be applied only a countable

number of times, the set of convexified prices has measure zero with respect to the density

of z. Hence, they do not affect the fixed point.

It is important to point out that differentiability of the distribution of productivity F

is not needed for the existence of an equilibrium. We assume it to ensure that H(·) and

Q(·) are almost everywhere differentiable so that equation (7) is a necessary condition for

optimal prices (see below). However, even when F is not differentiable and the first order

condition cannot be used to characterize the equilibrium, an equilibrium with the properties

of Proposition 1 exists where p̂(z) and ψ̂(p̂(z), z) are monotonic in z but not necessarily

strictly monotonic for all z.

Necessity of the first order condition. We show that Q and H are almost everywhere

differentiable, so that Lemma 1 implies that equation (7) is necessary for an optimum. We

guess that p̂(z) is strictly decreasing and almost everywhere differentiable. It immediately

follows that V(z) is strictly increasing in z and almost everywhere differentiable. Then, given

the assumption that F is differentiable, we have that K is differentiable. From H(x) =

K(V−1(x)) it follows that H is also almost everywhere differentiable. Given that G and H

are differentiable, so is Q. Then the first order condition in equation (7) is necessary for
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an optimum, which indeed implies that p̂(z) is strictly decreasing and differentiable in z in

any neighborhood of the first order condition. Finally, given that p̂(z) has a countably many

discontinuity points, it has countably many points where it is not differentiable, and the first

order condition does not apply at those points, but applies everywhere else. These points

have measure zero with respect to the density of z and therefore p̂(z) is almost everywhere

differentiable.

Proof of Point (i). We already proved that p̂(z) is non-increasing in z. The proof that

p̂(z) is strictly decreasing follows by contradiction. Consider that p̂(z1) = p̂(z2) = p̃ for some

z1, z2 ∈ [z, z̄]. Also, without loss of generality, assume that z1 < z2. Given that we already

established the necessity of the first order condition presented in equation (7) when prices

are monotonic, suppose that it is satisfied at the pair {z2, p̃}. Notice that, because of the

assumed i.i.d. structure of productivity shocks together with πz(p, z) < 0, it is not possible

that the first order condition is also satisfied at the pair {z1, p̃}. Moreover, because the first

order condition is necessary and we already established that p̂(z) cannot be increasing at any

z, we conclude that the optimal price at z1 is strictly larger than at z2. That is, p̂(z1) > p̂(z2).

Notice that this verifies the conjecture used to prove the necessity of the first order condition,

which in turn validates the use of equation (7) here.30

Notice that, because p̂(z) is strictly decreasing in z, the fact that v′(p) < 0 together with

i.i.d. productivity, implies, through an application of the contraction mapping theorem, that

V(z) = V̄ (p̂(z), z) is increasing in z.

Proof of Point (ii). ψ̂(p, z) ≥ 0 immediately follows its definition. The fact that V(z)
is strictly increasing in z implies that ψ̂(p̂(z̄), z̄) = 0 and that ψ̂(p̂(z), z) and ∆(p̂(z), z) are

strictly increasing in z. Because of price dispersion, some customers are searching, which

guarantees that ∆(p̂(z̄), z̄) > 1. Likewise, ∆(p̂(z), z) < 1.

30If prices are not strictly decreasing, this argument cannot be used as the first order condition is not
necessary. However, it is possible to prove that p̂(z) is strictly decreasing in z for some region of z. The
argument follows by contradiction. Suppose that p̂(z) is everywhere constant in z at some p̃. Then p̄(z) = p̃
for all z. If p̃ > p∗(z̄), then p̃ would not be optimal for firm with productivity z̄, which would choose a lower
price. If p̃ = p∗(z̄), then continuous differentiability of G together with H = G = Q = 0 at the conjectured
constant equilibrium price imply that the first order condition is locally necessary for an optimum, and a
firm with productivity z < z̄ would have an incentive to deviate according to equation (7), and set a strictly
higher price than p̃. Finally, the result that p̂(z) < p∗(z) for all z < z̄ and that p̂(z̄) = p∗(z̄) follows from
applying Lemma 1, and using that p̂(z) ≥ p̂(z̄) and p̄(z) = p̂(z̄) for all z.
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B Proof of Corollary 1

Part (1): Start by noticing that, because the mean of G(ψ) is positive, the expected value of

searching diverges to −∞ as n diverges to infinity. Because prices are finite for all z ∈ [z, z̄],

the value of not searching is bounded. As a result, customers do not search so that firms

do not face customer base concerns. Formally, p̄(z) → ∞ for all z ∈ [z, z̄]. Because p∗(z) is

finite for all z ∈ [z, z̄], it follows immediately that p∗(z) < p̄(z) for all z ∈ [z, z̄]. Then, using

Lemma 1 we obtain that p̂(z) = p∗(z) for all z ∈ [z, z̄].

Part (2): From Proposition 1 we have that, in equilibrium, the highest price is p̂(z).

Moreover, under the assumptions of Proposition 1, the first order condition is a necessary

condition for optimality of prices. We use this to show that, as n approaches zero, p̂(z) has

to approach p̂(z̄) = p∗(z̄). In equilibrium, it is possible to rewrite equation (7), evaluated at

{p̂(z), z}, as LHS(p̂(z), n) = RHS(p̂(z), n), where

LHS(p̂(z), n) ≡ G′(ψ̂(p̂(z), z)/n)ψ̂p(p̂(z), z)/n+

+
(
G(ψ̂(p̂(z), z)/n)H ′(V̄ (p̂(z), z)) +Q′(V̄ (p̂(z), z))

)
V̄p(p̂(z), z) ,

RHS(p̂(z), n) ≡ −πp(p̂(z), z)
Π(p̂(z), z)

(
1−G(ψ̂(p̂(z), z)/n)

)
,

given that H(V̄ (p̂(z), z)) = Q(V̄ (p̂(z), z)) = 0. Suppose that as n ↓ 0, ψ̂(p̂(z), z) does not

converge to zero. Then, G
(
ψ̂(p̂(z),z)

n

)
↑ 1 as n ↓ 0. This implies that limn↓0RHS(p̂(z), n) > 0.

Consider now the function LHS(p̂(z), n). Again, suppose that as n ↓ 0, ψ̂(p̂(z), z) does not

converge to zero. Notice that the second term of the function approaches a finite number as

V̄p(p̂(z), z) is bounded by assumptions on v(p) and H ′(V̄ (p̂(z), z)) and Q′(V̄ (p̂(z), z)) being

bounded as a result of Proposition 1. Moreover, as long as p̂(z) > p̄(z) = p∗(z̄), we have

that ψ̂p(p̂(z), z) > 0 so that ψ̂p(p̂(z), z)/n diverges as n approaches zero. This means that

G′
(
ψ̂(p̂(z),z)

n

)
ψ̂p(p̂(z),z)

n
is divergent, and therefore the first order condition cannot be satisfied.

This analysis concluded that, if ψ̂(p̂(z), z) does not converge to zero as n becomes ar-

bitrarily small, the first order condition, i.e. equation (7), cannot be satisfied. This occurs

because LHS(p̂(z), n) would diverge to infinity, while RHS(p̂(z), n) would remain finite. It

then follows that, as n approaches zero, a necessary condition is that ψ̂(p̂(z), z) also ap-

proaches zero. This condition can be restated as requiring that p̂(z) approaches p̄(z) as n

approaches zero. Moreover, given the assumptions of Proposition 1, p̄(z) = p̂(z̄) = p∗(z̄).

In the end, if p̂(z) approaches p∗(z̄) as n becomes arbitrarily small (so that ψ̂(p̂(z), z) → 0

and ψ̂p(p̂(z), z) → 0), we have that limn↓0 LHS(p̂(z), n) < ∞ and limn↓0RHS(p̂(z), n) < ∞
as πp(p

∗(z̄), z) is bounded as π(p∗(z̄), z) > 0. However, if p̂(z) does not approach p∗(z̄) as n
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becomes arbitrarily small, we have that LHS(p̂(z), n) diverges as n approaches zero, while

LHS(p̂(z), n) remains finite. As the first order condition has to be satisfied in equilibrium, a

necessary condition is that, as n approaches zero, the highest price in the economy, i.e. p̂(z),

has to approach the lowest price in the economy, i.e. p∗(z̄).

C Data sources and variables construction

This appendix provides additional information on the data sources presented in Section 2.

We also document more in depth the procedure used to construct the main variable used to

empirically assess the relevance of the extensive margin of demand.

C.1 Data and selection of the sample

The retailer that provided both the price data and the consumer panel is a large supermarket

chain that operates over 1,000 stores across the United States. It is a high/low supermarket

chain selling grocery goods as well as household supplies; it could be compared to Kroeger

or Tesco.

Sampling and representativeness

The Consumer Panel data include complete purchase data for over 11,000 customers of the

chain sampled for the major markets for the retailer, excluding those where it operates under

acquired brands. Households are tracked through usage of the supermarket loyalty card;

purchases made without using the card are not recorded. However, the chain ensures that

the loyalty card has a high penetration, for instance by keeping to a minimum the effort

needed to register. Furthermore, nearly all promotional discounts are tied to ownership

of a loyalty card, which provides a strong incentive to sign up and use it. Therefore, we

can consider the customers in our sample as representative of the population of non casual

shoppers at the chain.

The Price Data cover 270 stores. This is about a fifth of the stores operated by the

retailer; however, the chain sets different prices for the same UPC in different geographic

areas, called “price areas”. The set of stores for which the retailer provided information was

designed so that at least one store for each price area would be included.

C.2 Variables construction

Exit from the customer base
The dependent variable in the regression presented in equation (2) is an indicator for whether
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a customer is exiting the customer base of the chain. With data on grocery purchases at

a single retail chain it is hard to definitively assess whether a customer has abandoned the

retailer to shop elsewhere or she is simply not purchasing groceries in a particular week,

for instance because she is just consuming her inventory. In fact, we observe households

when they buy groceries at the chain but do not have any information on their shopping at

competing grocers. Our choice is to assume that a customer is shopping at some other store

when she has not visited any supermarket store of the chain for at least eight consecutive

weeks. The Exit dummy is then constructed so that it takes value of one in correspondence

to the last visit at the chain before a spell of eight or more weeks without shopping there.

Table 3 summarizes shopping behavior for households in our sample. It is immediate to

notice customer.bibthat an eight-week spell without purchase is unusual, as customers tend

to show up frequently at the stores. This strengthens our confidence that customers missing

for an eight-week period have indeed switched to a different retailer.

Table 3: Descriptive statistics on customer shopping behavior

Mean Std.dev. 25th pctile 75th pctile

Number of trips 150 127 66 200

Days elapsed between consecutive trips 4.2 7.5 1 5

Expenditure per trip ($) 69 40 40 87

Frequency of exits 0.003 0.065

In Figure 9 we document the seasonality in exit rates. We find that the probability of

exit is roughly stable across months.

Weekly UPC prices

The Consumer Panel reports information on the price paid conditional on a certain item

having been bought by the customer. Therefore, if we do not observe at least one household

in our sample buying a given item in a store in a week, we cannot infer the price of the item

in that store-week. However, our definition of basket requires us to be able to attach a price

to each of the items composing it in every week, even when the customer does not shop. The

issue can be solved using the Price data which report information on weekly store revenues

and quantities, regardless of the shopping decisions of the households in our Consumer Panel.

We use data on store level revenues and quantities sold in the Price data to compute Unit
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Figure 9: Survival in the customer base
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Notes: The figure plots the unconditional probability of exit, computed as the ratio of the number of exits and the number
of shopping trips by customers of the chain, by month. The definition of exit adopted for the plot is our baseline one: lack of
shopping trips at the chain for 8 consecutive weeks or more.

value prices as

UV P j
tu =

TRj
tu

Qj
tu

,

where TR represent total revenues and Q the total number of units sold of good u in week t

in store j.

As explained in Eichenbaum et al. (2011), this only allows us to recover an average price

for goods that were on promotion. In fact the same good will be sold to loyalty card carrying

customers at the promotional price and at full price to customers who do not have or use

a loyalty card. Without information on the fraction of these two types of customers it is

not possible to recover the two prices separately. Furthermore, since prices are constructed

based on information on revenues, missing values can originate even in this case if no unit

of a specific item is sold in a given store in a week. This is, however, a rare occurrence and

involves only infrequently purchased UPCs, which are unlikely to represent important shares

of the basket for any of the households in the sample. For the analysis, we only retain UPCs

with at most two nonconsecutive missing price observations and impute price for the missing
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observation interpolating the prices of the contiguous weeks.

In order to use unit value prices calculated from store-level data to compute the price

of the basket of a specific household, we need to determine to which price area the store(s)

at which she regularly shops belong. This information is not supplied by the retailer that

kept the exact definition of the price areas confidential. A possible solution is to infer in

which price areas the store(s) visited by a household are located by comparing the prices

contained in the household panel with those in the store data. In principle the household

data should give information on enough UPC prices in a given week to identify the price

area representative store whose pricing they are matching. However, even though two stores

belonging in the same price area should have the same prices, they may not have the same

unit value prices if the share of shoppers using the loyalty card differs in the two stores.

Therefore, we choose to restrict our analysis to the set of customers shopping predominantly

(over 80% of their grocery expenditure at the chain) in one of the 270 stores for which the

chain provided complete store-level data. This choice is costly in terms of sample size: only

1,336 households (or 12% of the original sample) shop at one of the 270 stores for which

we have store-level price data. However, since the 270 representative stores were randomly

chosen, the resulting subsample of households should not be subject to any selection bias.

Composition of the household basket and basket price

The household scanner data deliver information on all the UPCs a household has bought

through the sample span. We assume that all of them are part of the household basket

and, therefore, the household should care about all of those prices. Some of the items in

the household’s basket are bought regularly, whereas others are purchased less frequently.

We take this into account when constructing the price of the basket by weighting the price

of each item by its expenditure share in the household budget. The price of household i ’s

basket purchased at store j in week t is computed as:

pjit =
∑
u∈Ki

ωiu p
j
ut , ωiu =

∑
tEiut∑

u

∑
tEiut

,

where Ki is the set of all the UPCs (u) purchased by household i during the sample period,

pjut is the price of a given UPC u in week t at the store costj where the customer shops. Eiut

represents expenditure by customer i in UPC u in week t and the ωiu’s are a set of household-

UPC specific weights. There is the practical problem that the composition of the consumer

basket cannot vary through time; otherwise basket prices for the same customer in different

weeks would not be comparable. This requires that we drop from the basket all UPCs for

which we do not have price information for every week in the sample. However, the price

information is missing only in instances where the UPC registered no sales in a particular
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week. It follows that only low market-share UPCs will have missing values and, therefore,

the UPCs entering the basket computation will represent the bulk of each customer’s grocery

expenditure. The construction of the cost of the basket follows the same procedure where we

substitute the unit value price with the measure of replacement cost provided by the retailer.

We choose to calculate the weights using the total expenditure in the UPC by the house-

hold over the two years in the sample. This can lead to some inaccuracy in identifying the

goods the customer cares for at a given point in time. For example, if a customer bought only

Coke during the first year and only Pepsi during the second year of data, our procedure would

have us give equal weight to the price of Coke and Pepsi throughout the sample period. If we

used a shorter time interval, for example using the expenditure share in the month, we would

correctly recognize that she only cares about Coke in the first twelve months and only about

Pepsi in the final 12 months. However, weights computed on short time intervals are more

prone to bias induced by pricing. For example, a two-weeks promotion of a particular UPC

may induce the customer to buy it just because of the temporary convenience; this would

give the UPC a high weight in the month. The effect of promotion is instead smoothed when

we compute weights using expenditure over the entire sample period.

The construction of the price of the competitors occurs in two steps. First, we use the

IRI data and the same procedure described above to obtain a price for the basket of each

consumer at every store located in her same Metropolitan Statistical Area. Next, we average

those prices across stores to obtain the average market price of the consumer basket. In

particular, the price is computed as:

p̄it =
∑
j∈m(i)

sj
∑
u∈Ki

ωiup
j
ut, ωiu =

∑
tEiut∑

u

∑
tEiut

, sj =

∑
tR

j
t∑

j′∈M
∑

tR
j′
t

where m(i) is the market of residence for customer i and Rj
t represents revenues of store j in

week t. In other words, in the construction of the competitors’ price index stores with higher

(revenue-based) market shares weight more.

D Numerical solution of the model

In order to solve the model, we start by setting the parameters. The parameters β, κ and I

are constant throughout the numerical exercises. For the set of estimated parameters Ωn =

[λn, ζn, ρn, σn]
′, we set a search grid. The grid is different for each parameter, as they differ

both in their levels and in the sensitivity of the statistics of interest to their variation. We

consider a grid with an interval of 0.01 for σ, 0.05 for ρ, 0.5 for ζ , and 0.01 for λ. Each Ωn

corresponds to a particular combination of parameters among these grids. For each Ωn we
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set θ to obtain E[εd(z)+[εm(z)] = 4 and the exogenous customer attrition rate δ so to match

the fraction of customers that exit the customer base of the supermarket chain in a week,

i.e. 0.0044.

We next describe how we solve for the equilibrium of the model for a given combination

of parameters. We start by discretizing the AR(1) process for productivity to a Markov

chain featuring N = 25 different productivity values. We then conjecture an equilibrium

function p̂(z). Given our definition of equilibrium and the results of Proposition 1, we look

for equilibria where p̂(z) ∈ [p∗(z̄), p∗(z)] for each z, and p̂(z) is decreasing in z. Our initial

guess for p̂(z) is given by p∗(z) for all z. We experiment with different initial guesses and

found that the algorithm always converges to the same equilibrium.

Given the guess for p̂(z), we can compute the continuation value of each customer as a

function of the current price and productivity, i.e. V̄ (p, z), and solve for the optimal search

and exit thresholds. Given p̂(z) and the customers’ search and exit thresholds we can solve

for the distributions of customers Q(·) and H(·) as defined in Definition 1. Notice that

the latter also amounts to solve for a fixed point in the space of functions. Here, standard

arguments for the existence of a solution to invariant distribution for Markov chains apply.

Therefore, the assumption that F (z′|z) > 0 and ∆(p̂(z), z) > 0 ensure the existence of a

unique K(z). Finally, given Q(·), H(·), p̂(z) and V̄ (p, z), we solve the firm problem and the

obtain optimal firm prices given by the function p̂(z). We use p̂(z) to update our conjecture

about equilibrium prices p̂(z), and iterate this procedure until convergence to a fixed point

where p̂(z) = p̂(z) for all z ∈ [z, z̄].

Once we have solved for the equilibrium of the model at given parameter values. We then

evaluate the objective function (vd− v(Ωn))
′Σ (vd− v(Ωn)) at each iteration. We assume the

weighting matrix Σ to be the identity matrix. We select as estimates the parameter values

from the proposed grid that minimize the objective function and check that the optimum in

the interior of the assumed grid.

E Extension: unforeseen aggregate shocks

In this appendix we provide details on how the model can be extended to use it to evaluate

the role of aggregate shocks. In particular we consider the dynamics following an unforeseen

aggregate shock that takes the economy temporarily away from the steady state, and study

its convergence back to the initial steady state. To do so we need to allow for the possibility

that the aggregate state varies over time. This means that the key equations of the model

(listed below) will now be indexed by a time subscript t, capturing the dynamics in the

aggregate state. As we want to study the effects of aggregate shocks in general equilibrium
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we also add a stylized model of the labor market so that household income is endogenously

determined. The worker chooses the path of �t that maximizes household preferences in

equation (14).

The production technology of the perfectly competitively sold good (good n) is linear

in labor, so that its supply is given by ynt = Zt �
n
t , where Zt is aggregate productivity, and

�nt is labor demand by this firm. The production technology of the other good (good d)

is also linear in labor, so that its supply is given by yjt = Zt z
j
t �

j
t , where Zt is aggregate

productivity, and �nt is labor demand by this firm, where j indexes one particular producer.

Perfect competition in the market for variety n and in the labor market implies that workers

are paid a wage equal to the marginal productivity of labor so that wt = qt Zt. Equilibrium

in the labor markets requires �t = �nt +
∫ 1

0
�jt dj.

The value function of each shopper is given by

Vt(p, z, ψ) = max
{
V̄t(p, z) , V̂t(p, z)− ψ

}
, (16)

where

V̂t(p, z) =

∫ +∞

−∞
max

{
V̄t(p, z) , x

}
dHt(x) , (17)

and

V̄t(p, z) = vt(p) + β (1− q)EG

[∫ z̄

z

Vt+1(p̂t+1(x), x, ψ
′) dF (x|z)

]
+ (18)

+ β q EG

[∫ z̄

z

Vt+1(p̂t+1(x), x, ψ
′) dF̄ (x)

]
.

with

vt(p) = max
d, n

(
d

θ−1
θ + n

θ−1
θ

) θ
θ−1

(1−γ)

1− γ
(19)

s.t. p d+ n ≤ It , (20)

The first order condition to the problem in equations (19)-(20) delivers the following standard

downward sloping demand function for variety d

dt(p) =
It
P

( p
P

)−θ
. (21)
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where P = ((p)1−θ+1)
1

1−θ is the price of the consumption basket. The solution to the shopper

search problem gives a threshold

ψ̂t(p, z) ≡
∫ ∞

V̄t(p,z)

(
x− V̄t(p, z)

)
dHt(x) ≥ 0 .

The equilibrium pricing function p̂t(z) is given by the solution to the firm pricing problem

Wt(z) = max
p

∆t(p, z) π(p, z) + ∆t(p, z) β̃t (1− q)

∫ z̄

z

Wt+1(z
′)dF (z′| z) , (22)

where

∆t(p, z) ≡ 1−G
(
ψ̂t(p, z)

)(
1− Ht(V̄t(p, z))

)
︸ ︷︷ ︸

customers outflow

+Qt

(
V̄t(p, z)

)
︸ ︷︷ ︸
customers inflow

, (23)

and

β̃t ≡ β

∫ 1

0
(ct+1(i))

−γ /Pt+1(i) di∫ 1

0
(ct(i))

−γ /Pt(i) di
,

where
∫ 1

0
(ct(i))

−γ /Pt(i) di is the household marginal increase in utility with respect to nom-

inal income; ct(i) denotes customer i’s consumption basket in period t, and Pt(i) is the

associated price index.

The equilibrium distributions Ht(·) and Qt(·) are given

Ht(x) = Kt(ẑ(x)) and Qt(x) =

∫ ẑ(x)

z

G(ψ̂t(p̂t(z), z)) dKt(z) ,

for each x ∈ [Vt(z),Vt(z̄)], where ẑ(x) = max{z ∈ [z, z̄] : Vt(z) ≤ x}, Vt(z) = V̄t(p̂t(z), z),

and

Kt(z) = (1− q)

∫ z

z

∫ z̄

z

∆t−1(p̂t−1(x), x) dF (s|x) dKt−1(x) + q

∫ z

z

dF̄ (x) .

t) consumption
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